学习建设网站开发app用腾讯云做网站

张小明 2026/1/2 7:52:12
学习建设网站开发app,用腾讯云做网站,响应式网站布局实例,做房地产网站建设一、项目介绍 本文提出了一种基于深度学习目标检测模型YOLOv11的石头剪刀布手势识别系统#xff0c;能够实时检测并分类用户手势#xff08;石头、剪刀、布#xff09;。系统采用YOLOv11模型#xff0c;结合高质量的自定义YOLO数据集#xff08;包含训练集6,455张、验证集…一、项目介绍本文提出了一种基于深度学习目标检测模型YOLOv11的石头剪刀布手势识别系统能够实时检测并分类用户手势石头、剪刀、布。系统采用YOLOv11模型结合高质量的自定义YOLO数据集包含训练集6,455张、验证集576张和测试集304张图像实现了高精度的检测性能。此外系统配备了用户友好的UI界面支持登录与注册功能。实验结果表明该系统在测试集上表现优异能够满足实时手势识别的需求为游戏交互、智能控制等领域提供了可行的解决方案。引言石头剪刀布是一种简单而广泛流行的手势游戏近年来在人机交互、智能娱乐等领域受到关注。随着计算机视觉技术的发展基于深度学习的手势识别方法逐渐成为研究热点。目标检测模型如YOLO系列因其高效性和准确性在实时检测任务中表现出色。本文基于YOLOv11模型构建了一套完整的石头剪刀布手势检测系统。系统采用高质量标注的数据集包含石头、剪刀、布三类手势并通过数据增强和模型优化提升检测性能。同时系统设计了直观的UI界面集成用户登录与注册功能。实验证明该系统能够高效、准确地识别手势适用于游戏、智能设备控制等多种场景。目录一、项目介绍引言二、项目功能展示2.1 用户登录系统2.2 检测功能2.3 检测结果显示2.4 参数配置2.5 其他功能3. 技术特点4. 系统流程三、数据集介绍1. 数据集组成数据集配置文件四、项目环境配置创建虚拟环境安装所需要库五、模型训练训练代码训练结果六、核心代码登录注册验证 多重检测模式️ 沉浸式可视化⚙️ 参数配置系统✨ UI美学设计 智能工作流七、项目源码视频简介基于深度学习YOLOv11的石头剪刀布检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv11的石头剪刀布检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型二、项目功能展示✅ 用户登录注册支持密码检测和安全性验证。✅ 三种检测模式基于YOLOv11模型支持图片、视频和实时摄像头三种检测精准识别目标。✅ 双画面对比同屏显示原始画面与检测结果。✅ 数据可视化实时表格展示检测目标的类别、置信度及坐标。✅智能参数调节提供置信度滑块动态优化检测精度适应不同场景需求。✅科幻风交互界面深色主题搭配动态光效减少视觉疲劳提升操作体验。✅多线程高性能架构独立检测线程保障流畅运行实时状态提示响应迅速无卡顿。2.1 用户登录系统提供用户登录和注册功能用户名和密码验证账户信息本地存储(accounts.json)密码长度至少6位的安全要求2.2 检测功能图片检测支持JPG/JPEG/PNG/BMP格式图片的火焰烟雾检测视频检测支持MP4/AVI/MOV格式视频的逐帧检测摄像头检测实时摄像头流检测(默认摄像头0)检测结果保存到results目录2.3 检测结果显示显示原始图像和检测结果图像检测结果表格展示包含检测到的类别置信度分数物体位置坐标(x,y)、2.4 参数配置模型选择置信度阈值调节(0-1.0)IoU(交并比)阈值调节(0-1.0)实时同步滑块和数值输入框2.5 其他功能检测结果保存功能视频检测时自动保存结果视频状态栏显示系统状态和最后更新时间无边框窗口设计可拖动和调整大小3. 技术特点采用多线程处理检测任务避免界面卡顿精美的UI设计具有科技感的视觉效果发光边框和按钮悬停和按下状态效果自定义滑块、表格和下拉框样式检测结果保存机制响应式布局适应不同窗口大小4. 系统流程用户登录/注册选择检测模式(图片/视频/摄像头)调整检测参数(可选)开始检测并查看结果可选择保存检测结果停止检测或切换其他模式三、数据集介绍本研究所使用的石头剪刀布手势检测数据集是专门为YOLOv11目标检测任务构建的高质量标注数据集包含石头Rock、剪刀Scissors、布Paper三个类别。1. 数据集组成训练集Train6,455张图像验证集Validation576张图像测试集Test304张图像数据集配置文件数据集采用标准化YOLO格式组织train: F:\石头剪刀布检测数据集\train\images val: F:\石头剪刀布检测数据集\valid\images test: F:\石头剪刀布检测数据集\test\images nc: 3 names: [Paper, Rock, Scissors]四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov11 python3.9激活虚拟环境conda activate yolov11安装cpu版本pytorchpip install torch torchvision torchaudio安装所需要库pip install -r requirements.txtpycharm中配置anaconda五、模型训练训练代码from ultralytics import YOLO model_path yolo11s.pt data_path data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs100, batch8, device0, workers0, projectruns, nameexp, )根据实际情况更换模型 # yolov11n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 # yolov11s.yaml (small)小模型适合实时任务。 # yolov11m.yaml (medium)中等大小模型兼顾速度和精度。 # yolov11b.yaml (base)基本版模型适合大部分应用场景。 # yolov11l.yaml (large)大型模型适合对精度要求高的任务。--batch 8每批次8张图像。--epochs 100训练100轮。--datasets/data.yaml数据集配置文件。--weights yolov11s.pt初始化模型权重yolov11s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMessageBox, QFileDialog from PyQt5.QtCore import QThread, pyqtSignal from ultralytics import YOLO from UiMain import UiMainWindow import time import os from PyQt5.QtWidgets import QDialog from LoginWindow import LoginWindow class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 原始帧, 检测帧, 检测结果 finished_signal pyqtSignal() # 线程完成信号 def __init__(self, model, source, conf, iou, parentNone): super().__init__(parent) self.model model self.source source self.conf conf self.iou iou self.running True def run(self): try: if isinstance(self.source, int) or self.source.endswith((.mp4, .avi, .mov)): # 视频或摄像头 cap cv2.VideoCapture(self.source) while self.running and cap.isOpened(): ret, frame cap.read() if not ret: break # 保存原始帧 original_frame frame.copy() # 检测 results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) # 发送信号 self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) # 控制帧率 time.sleep(0.03) # 约30fps cap.release() else: # 图片 frame cv2.imread(self.source) if frame is not None: original_frame frame.copy() results self.model(frame, confself.conf, iouself.iou) annotated_frame results[0].plot() # 提取检测结果 detections [] for result in results: for box in result.boxes: class_id int(box.cls) class_name self.model.names[class_id] confidence float(box.conf) x, y, w, h box.xywh[0].tolist() detections.append((class_name, confidence, x, y)) self.frame_received.emit( cv2.cvtColor(original_frame, cv2.COLOR_BGR2RGB), cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB), detections ) except Exception as e: print(fDetection error: {e}) finally: self.finished_signal.emit() def stop(self): self.running False class MainWindow(UiMainWindow): def __init__(self): super().__init__() # 初始化模型 self.model None self.detection_thread None self.current_image None self.current_result None self.video_writer None self.is_camera_running False self.is_video_running False self.last_detection_result None # 新增保存最后一次检测结果 # 连接按钮信号 self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) # 初始化模型 self.load_model() def load_model(self): try: model_name self.model_combo.currentText() self.model YOLO(f{model_name}.pt) # 自动下载或加载本地模型 self.update_status(f模型 {model_name} 加载成功) except Exception as e: QMessageBox.critical(self, 错误, f模型加载失败: {str(e)}) self.update_status(模型加载失败) def detect_image(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.clear_results() self.current_image cv2.imread(file_path) self.current_image cv2.cvtColor(self.current_image, cv2.COLOR_BGR2RGB) self.display_image(self.original_image_label, self.current_image) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测图片: {os.path.basename(file_path)}) def detect_video(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.clear_results() self.is_video_running True # 初始化视频写入器 cap cv2.VideoCapture(file_path) frame_width int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps cap.get(cv2.CAP_PROP_FPS) cap.release() # 创建保存路径 save_dir results os.makedirs(save_dir, exist_okTrue) timestamp time.strftime(%Y%m%d_%H%M%S) save_path os.path.join(save_dir, fresult_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(save_path, fourcc, fps, (frame_width, frame_height)) # 创建检测线程 conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(f正在检测视频: {os.path.basename(file_path)}) def detect_camera(self): if self.detection_thread and self.detection_thread.isRunning(): QMessageBox.warning(self, 警告, 请先停止当前检测任务) return self.clear_results() self.is_camera_running True # 创建检测线程 (默认使用摄像头0) conf self.confidence_spinbox.value() iou self.iou_spinbox.value() self.detection_thread DetectionThread(self.model, 0, conf, iou) self.detection_thread.frame_received.connect(self.on_frame_received) self.detection_thread.finished_signal.connect(self.on_detection_finished) self.detection_thread.start() self.update_status(正在从摄像头检测...)登录注册验证对应文件LoginWindow.py# 账户验证核心逻辑 def handle_login(self): username self.username_input.text().strip() password self.password_input.text().strip() if not username or not password: QMessageBox.warning(self, 警告, 用户名和密码不能为空) return if username in self.accounts and self.accounts[username] password: self.accept() # 验证通过 else: QMessageBox.warning(self, 错误, 用户名或密码错误) # 密码强度检查注册时 def handle_register(self): if len(password) 6: # 密码长度≥6位 QMessageBox.warning(self, 警告, 密码长度至少为6位)多重检测模式对应文件main.py图片检测def detect_image(self): file_path, _ QFileDialog.getOpenFileName( self, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp)) if file_path: self.detection_thread DetectionThread(self.model, file_path, conf, iou) self.detection_thread.start() # 启动检测线程视频检测def detect_video(self): file_path, _ QFileDialog.getOpenFileName( self, 选择视频, , 视频文件 (*.mp4 *.avi *.mov)) if file_path: self.video_writer cv2.VideoWriter() # 初始化视频写入器 self.detection_thread DetectionThread(self.model, file_path, conf, iou)实时摄像头def detect_camera(self): self.detection_thread DetectionThread(self.model, 0, conf, iou) # 摄像头设备号0 self.detection_thread.start()️沉浸式可视化对应文件UiMain.py双画面显示def display_image(self, label, image): q_img QImage(image.data, w, h, bytes_per_line, QImage.Format_RGB888) pixmap QPixmap.fromImage(q_img) label.setPixmap(pixmap.scaled(label.size(), Qt.KeepAspectRatio)) # 自适应缩放结果表格def add_detection_result(self, class_name, confidence, x, y): self.results_table.insertRow(row) items [ QTableWidgetItem(class_name), # 类别列 QTableWidgetItem(f{confidence:.2f}), # 置信度 QTableWidgetItem(f{x:.1f}), # X坐标 QTableWidgetItem(f{y:.1f}) # Y坐标 ]⚙️参数配置系统对应文件UiMain.py双阈值联动控制# 置信度阈值同步 def update_confidence(self, value): confidence value / 100.0 self.confidence_spinbox.setValue(confidence) # 滑块→数值框 self.confidence_label.setText(f置信度阈值: {confidence:.2f}) # IoU阈值同步 def update_iou(self, value): iou value / 100.0 self.iou_spinbox.setValue(iou)✨UI美学设计对应文件UiMain.py科幻风格按钮def create_button(self, text, color): return f QPushButton {{ border: 1px solid {color}; color: {color}; border-radius: 6px; }} QPushButton:hover {{ background-color: {self.lighten_color(color, 10)}; box-shadow: 0 0 10px {color}; # 悬停发光效果 }} 动态状态栏def update_status(self, message): self.status_bar.showMessage( f状态: {message} | 最后更新: {time.strftime(%H:%M:%S)} # 实时时间戳 )智能工作流对应文件main.py线程管理class DetectionThread(QThread): frame_received pyqtSignal(np.ndarray, np.ndarray, list) # 信号量通信 def run(self): while self.running: # 多线程检测循环 results self.model(frame, confself.conf, iouself.iou) self.frame_received.emit(original_frame, result_frame, detections)七、项目源码视频简介基于深度学习YOLOv11的石头剪刀布检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv11的石头剪刀布检测系统YOLOv11YOLO数据集UI界面登录注册界面Python项目源码模型
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

安徽圣力建设集团网站青海省住房和城乡建设厅网站

存档修改器完全掌握指南:从入门到精通的海拉鲁冒险助手 【免费下载链接】BOTW-Save-Editor-GUI A Work in Progress Save Editor for BOTW 项目地址: https://gitcode.com/gh_mirrors/bo/BOTW-Save-Editor-GUI 想要在《塞尔达传说:旷野之息》中体…

张小明 2025/12/26 1:07:38 网站建设

办公门户网站模板褚明宇wordpress

matlab 滤波器设计,基于matlab的模拟滤波器和数字滤波器设计,其中数字滤波器包扩IIR和FIR的低通、高通、带通、带阻四大类型,模拟滤波器包括巴特沃斯(Butterworth)和切比雪夫(Chebyshev)算法下的低通、高通、带通、带阻…

张小明 2025/12/26 1:05:36 网站建设

高端建站需要什么条件wordpress能找工作吗

浙大疏锦行 📘 Day 23 实战作业:机器学习工程化 —— Pipeline 管道流 1. 作业综述 核心目标: 本作业旨在将机器学习工作流从“手动脚本”升级为“工业级管道”。我们将利用 sklearn.pipeline 模块,将数据清洗(缺失…

张小明 2025/12/26 1:03:33 网站建设

司法厅网站建设方案wordpress栏目置顶

你是否曾经因为Chrome浏览器占用过多内存而烦恼?是否担心个人隐私在浏览网页时被泄露?如果你正在寻找一个既快速又安全的浏览器解决方案,那么Thorium浏览器绝对是你的不二选择。 【免费下载链接】thorium Chromium fork named after radioact…

张小明 2025/12/26 1:01:30 网站建设

电商网站开发代码网站结构有哪些类型

城通网盘直链提取终极指南:3分钟突破下载限制 【免费下载链接】ctfileGet 获取城通网盘一次性直连地址 项目地址: https://gitcode.com/gh_mirrors/ct/ctfileGet 你是否曾为城通网盘的下载限制而烦恼?面对复杂的下载流程、缓慢的下载速度和各种广…

张小明 2025/12/26 0:59:27 网站建设

新手学做网站pdf下载如何做强一个网站的品牌

第一章:边缘AI Agent推理性能翻倍的秘密在资源受限的边缘设备上部署AI Agent,性能优化是决定用户体验的关键。通过模型压缩、硬件加速与运行时调度的协同设计,可实现推理性能翻倍,同时保持高准确率。模型轻量化:从结构…

张小明 2025/12/26 0:57:25 网站建设