国外做二手工业设备的网站168推广网

张小明 2025/12/24 20:38:00
国外做二手工业设备的网站,168推广网,贵阳网站设计企业,考试网站开发的可行性分析电力系统概率能量预测的深度生成模型:归一化流在电力系统领域#xff0c;准确的能量预测至关重要。传统的预测方法往往难以应对复杂多变的电力需求和供应情况#xff0c;而深度生成模型为这一难题带来了新的解决方案。今天#xff0c;咱们就来聊聊基于归一化流的深度生成模型…电力系统概率能量预测的深度生成模型:归一化流在电力系统领域准确的能量预测至关重要。传统的预测方法往往难以应对复杂多变的电力需求和供应情况而深度生成模型为这一难题带来了新的解决方案。今天咱们就来聊聊基于归一化流的深度生成模型在电力系统概率能量预测中的应用。归一化流简介归一化流Normalizing Flows是一种基于可逆变换的生成模型。简单来说它通过一系列可逆的变换将一个简单的、易于采样的分布比如高斯分布逐步映射到复杂的数据分布上。假设我们有一个简单分布 \(z\)通过一系列可逆变换 \(f1, f2,..., fn\)可以得到 \(x fn(f{n - 1}(...(f1(z))))\)。这些变换的巧妙之处在于我们可以通过计算变换的雅可比行列式Jacobian determinant来准确地计算从简单分布到复杂分布的概率密度变化。在电力系统概率能量预测中的应用电力系统的能量预测面临着诸多不确定性因素如天气变化、用户用电习惯等。归一化流模型能够捕捉这些不确定性给出概率性的预测结果而不仅仅是一个确定性的数值。代码示例下面我们用Python和PyTorch框架来简单演示一下归一化流的基本结构import torch import torch.nn as nn # 定义一个简单的可逆变换 class AffineCoupling(nn.Module): def __init__(self, dim): super(AffineCoupling, self).__init__() self.dim dim self.net nn.Sequential( nn.Linear(dim // 2, dim), nn.ReLU(), nn.Linear(dim, dim), nn.Tanh() ) def forward(self, x, reverseFalse): x1, x2 x[:, :self.dim // 2], x[:, self.dim // 2:] h self.net(x1) shift, scale h.chunk(2, dim1) scale torch.exp(scale) if not reverse: x2 x2 * scale shift log_det torch.sum(torch.log(scale), dim1) return torch.cat([x1, x2], dim1), log_det else: x2 (x2 - shift) / scale log_det -torch.sum(torch.log(scale), dim1) return torch.cat([x1, x2], dim1), log_det # 构建一个简单的归一化流模型 class SimpleNormalizingFlow(nn.Module): def __init__(self, dim, num_layers): super(SimpleNormalizingFlow, self).__init__() self.layers nn.ModuleList([AffineCoupling(dim) for _ in range(num_layers)]) def forward(self, x, reverseFalse): log_det 0 if not reverse: for layer in self.layers: x, ld layer(x) log_det ld else: for layer in reversed(self.layers): x, ld layer(x, reverseTrue) log_det ld return x, log_det代码分析AffineCoupling类这是一个基本的可逆变换模块。它将输入 \(x\) 分成两部分 \(x1\) 和 \(x2\)对 \(x1\) 通过一个神经网络self.net得到shift和scale。在正向传播时x2根据scale和shift进行变换同时计算对数行列式log_det这在计算概率密度变换时很关键。反向传播时操作则相反。SimpleNormalizingFlow类它构建了一个由多个AffineCoupling层组成的归一化流模型。正向和反向传播时依次通过各个层进行变换并累计对数行列式。应用到电力系统预测在实际的电力系统概率能量预测中我们可以将历史电力数据作为训练数据通过归一化流模型学习其分布。在预测时从简单分布中采样经过归一化流变换得到预测的电力能量值及其概率分布。当然实际应用中还需要考虑很多细节比如如何更好地预处理电力数据如何选择合适的网络结构和超参数等。但归一化流这种新颖的深度生成模型无疑为电力系统概率能量预测打开了一扇新的大门让我们能够更准确、更全面地应对电力系统中的不确定性。希望今天的分享能让大家对这一领域有一些新的认识和启发一起探索更多有趣的应用
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

浙江通管局 网站备案如何好注销涿州网站建设公司

AI DevOps工具公司Harness由连续创业者Jyoti Bansal于2017年创立,该公司预计2025年年度经常性收入将超过2.5亿美元。这家初创公司刚刚完成了2.4亿美元的E轮融资,融资后估值达到55亿美元。本轮融资包括由高盛领投的2亿美元主要投资,以及计划中…

张小明 2025/12/24 4:07:05 网站建设

中国河北建设银行官网招聘网站网站设计制作公司大全

Daytona:运行AI生成代码的安全与弹性基础设施 在现代软件开发中,AI技术的应用愈加广泛,如何安全、高效地运行AI生成的代码,成为了一个重要的挑战。Daytona作为一款创新的开源项目,提供了一个安全、弹性极高的基础设施…

张小明 2025/12/23 18:35:15 网站建设

建设一个网站需要哪方面的费用郑州做网站公司汉狮

Dart Simple Live应用体积精简实用指南 【免费下载链接】dart_simple_live 简简单单的看直播 项目地址: https://gitcode.com/GitHub_Trending/da/dart_simple_live 你是否曾为直播应用安装包过大而烦恼?当用户看到几十兆的安装包时,下载意愿往往…

张小明 2025/12/23 23:43:45 网站建设

网站简介 title网站怎么做用户体验

35岁,是程序员职业道路上的一道“分水岭”——传统开发岗位的年龄限制、重复劳动的职业倦怠、技术迭代的焦虑感,让不少人陷入“转型无门、坚守乏力”的困境。而大模型浪潮的席卷,恰好为有多年技术积淀的程序员打开了新天窗:你的编…

张小明 2025/12/24 0:23:51 网站建设

seo整站优化外包服务网站经常被挂马

简介T30 天正建筑 V1.0 互联版是天正公司于 2025 年 1 月正式发布的一款基于 AutoCAD 平台的专业级建筑设计应用软件。该软件以高效绘图、智能编辑及协同设计为核心功能,可适配现代建筑设计领域从图纸绘制至工程管理的全流程业务需求。门窗与洞口设计优化&#xff1…

张小明 2025/12/24 6:51:32 网站建设

济南简单网站制作排名公司头条新闻 免费下载

安全性风险 共享IP意味着多个用户或网站共用同一IP地址,可能导致安全风险。例如,若其中一个用户涉及恶意活动(如发送垃圾邮件、发起攻击),该IP可能被列入黑名单,影响其他无辜用户。性能波动 共享IP的服务器…

张小明 2025/12/23 20:22:40 网站建设